Two kinematic synergies in voluntary whole-body movements during standing.

نویسندگان

  • Sandra M S F Freitas
  • Marcos Duarte
  • Mark L Latash
چکیده

We used a particular computational approach, the uncontrolled manifold hypothesis, to investigate joint angle covariation patterns during whole-body actions performed by standing persons. We hypothesized that two kinematic synergies accounted for the leg/trunk joint covariation across cycles during a rhythmic whole-body motion to stabilize two performance variables, the trunk orientation in the external space and the horizontal position of the center of mass (COM). Subjects stood on a force plate and performed whole-body rhythmic movements for 45 s under visual feedback on one of the four variables, the position of the center of pressure or the angle in one of the three joints (ankle, knee, or hip). The Fitts-like paradigm was used with two target amplitudes and six indices of difficulty (ID) for each of the four variables. This was done to explore the robustness of kinematic postural synergies. A speed-accuracy trade-off was observed in all feedback conditions such that the movement time scaled with ID and the scaling differed between the two movement amplitudes. Principal-component (PC) analysis showed the existence of a single PC in the joint space that accounted for over 95% of the joint angle variance. Analysis within the uncontrolled manifold hypothesis has shown that data distributions in the joint angle space were compatible with stabilization of both trunk orientation and COM location. We conclude that trunk orientation and the COM location are stabilized by co-varied changes of the major joint angles during whole-body movements. Despite the strong effects of movement amplitude and ID on performance, the structure of the joint variance showed only minor dependence on these task parameters. The two kinematic synergies (co-varied changes in the joint angles that stabilized the COM location and trunk orientation) have proven to be robust over a variety of tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences between kinematic synergies and muscle synergies during two-digit grasping

The large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two ques...

متن کامل

Linear and Nonlinear Kinematic Synergies in the Grasping Hand

Kinematic synergies in human hand movements have shown promising applications in dexterous control of robotic and prosthetic hands. We and others have previously derived kinematic synergies from human hand grasping movements using a widely used linear dimensionality reduction method, Principal Component Analysis (PCA). As the human biomechanical system is inherently nonlinear, using nonlinear d...

متن کامل

Inter-joint coupling and joint angle synergies of human catching movements.

A central question in motor control is how the central nervous system (CNS) deals with redundant degrees of freedom (DoFs) inherent in the musculoskeletal system. One way to simplify control of a redundant system is to combine several DoFs into synergies. In reaching movements of the human arm, redundancy occurs at the kinematic level because there is an unlimited number of arm postures for eac...

متن کامل

Candidates for Synergies: Linear Discriminants versus Principal Components

Movement primitives or synergies have been extracted from human hand movements using several matrix factorization, dimensionality reduction, and classification methods. Principal component analysis (PCA) is widely used to obtain the first few significant eigenvectors of covariance that explain most of the variance of the data. Linear discriminant analysis (LDA) is also used as a supervised lear...

متن کامل

Postural adjustments for online corrections of arm movements in standing humans.

The aim of this study was to investigate how humans correct ongoing arm movements while standing. Specifically, we sought to understand whether the postural adjustments in the legs required for online corrections of arm movements are predictive or rely on feedback from the moving limb. To answer this question we measured online corrections in arm and leg muscles during pointing movements while ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 2006